TeamControlNumber
ForofficeuseonlyF1________________F2________________
22599
ProblemChosen
F3________________F4________________
A
2013
MathematicalContestinModeling(MCM/ICM)SummarySheet
(Attachacopyofthispagetoyoursolutionpaper.)
HeatRadiationinTheOven
Heatdistributionofpansintheovenisquitedifferentfromeachother,whichdependsontheirshapes.Thus,ourmodelaimsattwogoals.Oneistoanalyzetheheatdistri-butionindifferentovensbasedonthelocationsofelectricalheatingcubes.Further-more,aseriesofheatdistributionwhichvariesfromcircularpanstorectangularpanscouldbegoteasily.Theotheristooptimizethepansplacing,inordertochooseabestwaytomaximizetheevenheatandthenumberofpansatthesametime.
Mathematicallyspeaking,oursolutionconsistsoftwomodels,analyzingandoptimi-zing.Inpartone,ourwhole-localapproachshowstheheatdistributionofeverypan.Firstly,weusetheStefan-BoltzmannlawandFouriertheoremtodescribetheheatdistributionintheairaroundtheelectricalheatingtube.Andthen,basedonplanein-terceptmethodandsimplifiedMonteCarlomethod,theheatdistributionofdifferentshapesofpansisobtained.Finally,weexplainthephenomenonthatthecornersofapanalwaysgetoverheatedwithwaterwavesstirringbyanalogy.Inparttwo,ourdiscretize-convertapproachoptimizestheshapeandnumberofthepans.Aboveall,wediscre-tizethesidelengthoftheoven,sothatthenumberandtheaverageheatofthepansvarylinearly.Intheend,theabstractweightPisconvertedintoaspecificlength,inordertoreachacompromisebetweenthetwofactors.
Specially,wecreateauniquemethodtoconvertthevariablesfromthewholespacetothelocalsection.Thespecialmethodallowsustodrawtheheatdistributionofeverysinglesectionintheoven.Thealgorithmwecreatedoesagreatjobinflexibility,whichcanbeappliedtoallshapesofpans.
Typeasummaryofyourresultsonthispage.Donotincludethenameofyourschool,advisor,orteammembersonthispage.
HeatRadiationinTheOven
Summary
Heatdistributionofpansintheovenisquitedifferentfromeachother,whichdependsontheirshapes.Thus,ourmodelaimsattwogoals.Oneistoanalyzetheheatdistri-butionindifferentovensbasedonthelocationsofelectricalheatingcubes.Further-more,aseriesofheatdistributionwhichvariesfromcircularpanstorectangularpanscouldbegoteasily.Theotheristooptimizethepansplacing,inordertochooseabestwaytomaximizetheevenheatandthenumberofpansatthesametime.
Mathematicallyspeaking,oursolutionconsistsoftwomodels,analyzingandoptimi-zing.Inpartone,ourwhole-localapproachshowstheheatdistributionofeverypan.Firstly,weusetheStefan-BoltzmannlawandFouriertheoremtodescribetheheatdistributionintheairaroundtheelectricalheatingtube.Andthen,basedonplanein-terceptmethodandsimplifiedMonteCarlomethod,theheatdistributionofdifferentshapesofpansisobtained.Finally,weexplainthephenomenonthatthecornersofapanalwaysgetoverheatedwithwaterwavesstirringbyanalogy.Inparttwo,ourdiscretize-convertapproachoptimizestheshapeandnumberofthepans.Aboveall,wediscre-tizethesidelengthoftheoven,sothatthenumberandtheaverageheatofthepansvarylinearly.Intheend,theabstractweightPisconvertedintoaspecificlength,inordertoreachacompromisebetweenthetwofactors.
Specially,wecreateauniquemethodtoconvertthevariablesfromthewholespacetothelocalsection.Thespecialmethodallowsustodrawtheheatdistributionofeverysinglesectionintheoven.Thealgorithmwecreatedoesagreatjobinflexibility,whichcanbeappliedtoallshapesofpans.Keywords:MonteCarlo
discretization
thermalradiation
section
heatdistribution
Team#22599Page1of23
Introduction
Manystudiesonheatconductionwastedplentyoftimeinsolvingthepartialdifferentialequations,sinceit’sdifficulttosolveevenforcomputers.Weturntoanotherwaytoworkitout.Firstly,westudytheheatradiationinsteadofheatconductiontokeepawayfromthesophisticatedpartialdifferentialequations.Then,wecreateauniquemethodtoconverteveryvariablefromthewholespacetosection.Inotherwords,weworkeverythingoutinheatradiationandconvertthemintoheatcontradiction.Assumptions
Wemakethefollowingassumptionsaboutthedistributionofheatinthispaper.·Initiallytworacksintheoven,evenlyspaced.
·Whenheatingtheelectricalheatingtubes,thetemperatureofwhichchangesfromroomtemperaturetothedesiredtemperature.Ittakessuchashorttimethatwecanignoreit.
·Differentpansaremadeinsamematerial,sotheyhavethesamerateofheatconduction.
·Theinnerwallsoftheovenareblackbodies.Thepanisagraybody.Theinnerwallsoftheovenabsorbheatonlyandreflectnoheat.
·Theheatcanonlybereflectedoncewhenreboundedfromthepan.HeatDistributionModelOurapproachinvolvesfoursteps:
·UsetheFouriertheoremtocalculatethelossenergywhenenergybeamsarespreadinthemedium.Sowecangettheheatdistributionaroundeachelectricalheatingtube.Theheatdistributionoftheentirespacecouldbegowheretheheatoftwoelectricalheatingtubescrosstogether.
·Whendifferentshapesofthepansareinsertedintotheoven,theheatmapoftheentirespaceiscrossedbythesectionofthepan.Thus,theheatmapofeverysinglepanisobtained.
Establishasuitablemodeltogetthereflectivityofeverysinglepointonthepanwith·
thesimplifiedMonteCarlomethod.Andthen,afinalheatdistributionmapofthepanwithoutreflectionlossisobtained.
·Arealisticconclusionisdrawnduetotheresultsofourmodelcomparedwithwaterwavepropagationphenomena.
Team#22599Page2of23
Firstofall,thepaperwillgiveadescriptionoftheinitialenergyoftheelectricalhea-tingtube.Weseeitasablackbodywhoreflectsnoheatatall.Electromagneticknow-ledgeshowsthatwavelengthoftheheatraysrangesfrom10−1umto102umasshownbelow[1]:
Figure1.
Figure2.
WeapplytheStefan-Boltzmann’slaw[2]whosesolutionis
c1λ−5
Ebλ=c2/(λT)e−1∞∞
c1λ−5
Eb=∫Ebλdλ=∫c2/(λT)dλe−100
WhereEbmeanstheabilityofblackbodytoradiate.c1andc2areconstants.Obviously,,theinitialenergyofablackbodyisEb0=3.2398e+012(w×m2).CombineFigure1withFigure2,weintegrate(1)fromλ1toλ2togettheequation
asfollow:
λ2
(1)(2)
Eb(λ1−λ2)=∫Ebλdλλ1
(3)
Team#22599Page3of23
Figure3.
FromFigure3,itcanbeseenhowthepowerofradiationvarieswithwavelength.Secondly,basedontheFouriertheorem,therelationbetweenheatandthedistancefromtheelectricalheatingtubesis:
dt(4)Q=−λSdxWhereQisthepowerofheat(J/s=W),Sistheareawheretheenergybeam
dtradiates(m2),representsthetemperaturegradientalongthedirectionofenergy
dxbeam.[3]
Itisknownthattheenergybecomesweakerasthedistancebecomeslarger.Accordingtothefactweknow:
dQ(5)ρ=
dxWhereρistherateofenergychanging.
Weassumethatthedesiredtemperatureofelectricalheatingtubeis500k.Withthetwoequations,thedistributionofheatisshownasfollow:
Figure4.(a)Figure4.(b)
Team#22599Page4of23
Inordertodrawthemapofheatdistributionintheoven,weuseMATLABtoworkonthecomplicatedalgorithm.TherelationbetweenthepowerofheatandthedistanceisshowninFigure4(a).TherelationbetweentemperatureanddistanceispresentedinFigure4(b).ThespreadingdirectionofenergybeamispresentedinFigure5.
Figure5.
Theshapeofelectricalheatingtubeisirregular.Theheatdistributionofasingleelectricalheatingtubecanbedrawin3DspacewithMATLAB.ThepictureisshowninFigure6.Aftersuperimposing,thetotalheatdistributionoftwotubesisshownbelowinFigure7andFigure8.
Figure6.Figure7.
Team#22599Page5of23
Figure8.
Thepicturesaboveshowtheenergyinanovenwithnopan.WeputinarectangularpanwhoseareaisA,andinterceptthemapswithMATLAB.TheresultisshowinFigure9.
Figure9.
Figure10.
Putinacircularpantointerceptthemaps,whoseareaisA,also.ThedistributionofheatisshowninFigure11.
Team#22599Page6of23
Figure11.
Whenputinapanintransitionshape,whichisneitherrectangularnorcircular.TheareaofitisA,also.Theheatdistributiononsuchapanisshownasfollow:
Figure12(a)
Team#22599Page7of23
Figure12(b).
Figure13.
Next,learningfromtheMonteCarlosimulation[4],amodelisestablishedtoget
obtainthereflectivity.Wegeneratearandomnumberbetween0and1todetermineiftheenergybeamoncertainpointisreflected.
•Firstly,todemonstratethequestionbetter,weconstructasimplemodel:
Team#22599Page8of23
Figure14.
Whereθistheviewinganglefromelectricalheatingtubetothepan.R=theproportionofthebeamsradiatedtothepan.
•Whatismore,weassumethetotalbeamisM1.Ideally,thenumberofabsorptionis
θ.Then,eachelementofthepanisseenasagridpoint.EachgridpointcanM1×360
θgeneratea-M1×-random-numbervectorbetween0and1inMATLAB.
360•AfterMATLABsimulating,thenumberofbeamsdecreasedbyM2,duetothe
360×M2
reflection.Sowedefineaprobabilityρ=todescribethenumberofbeams
M1θreflected.Theconclusionis:
•Ifρ≤R,theenergybeamisabsorbed.•Ifρ>R,theenergybeamisreflected.[5]
Basedontheanalysisabove,ourmodelgetafinalresultofheat-distributiononthepanasshownbelow:
θis360
Figure15(a)
Team#22599Page9of23
Figure15(b).
Theconclusionisknownthattheclosertheshapeofpansistocircle,themoreevenlytheheatisdistributed.Moreover,thephenomenonthatthecornersalwaysgetoverheatedcanbeexplainedbywaterwavepropagationindifferentcontainers.
Whenthereisafluctuationinthecenterofthewater,therippleswillfluctuateandspreadinconcentriccircles,asshowninFigure16.Thefluctuationstirswavesupwhencontactingtheborderlines.Comparedwiththewaveswithoneboundary,thewavesincornermakeahigheramplitude.
Thethermalconductiononthepanisexactlytheinverseprocessofthewavespropagation.Therangeofthermalmotionismuchsmallerthanitontheside.That’swhythecornersiseasytogetoverheated.
Inordertomaketheheatevenlydistributedonthepan,thesidesofthepanshouldbeasfewaspossible.Therefore,ifnothingisconsideredabouttheutilizationofspace,acirclepanisthebestchoice.
Figure16,thewaterwavespropagation[6]
AccordingtotheanalysisaboveandFigure7,thephenomenonshowsthattheheatconductionissimilartowaterwavespropagation.Soitisprovedthatheat
Team#22599Page10of23
concentratesinthefourcornersoftherectangularpan.TheSuperPanModelAssumptions
•Thewidthoftheoven(W)is100mm,thelengthisL.•Therearethreepansatmostinverticaldirection.•Eachpan’sareaisA.
Thefirstpart.
Calculatethemaximumnumberofpansintheoven.Differentshapesofpanhavedifferentheatdistributionwhichaffectsthenumberofpans,judgingfromtheprevioussolution.Accordingtotheconclusioninthefirstmodel,theheatisdistributedthemostevenlyonacircularpanratherthanarectangularone.However,therectangularpansmakefulleruseofthespacethespacethancircularones.Bothfactorsconsidered,apolygonalpanischosen.
Acirclecanberegardasapolygonwhosenumberofboundariestendstoinfinity.Exceptforrectangle,onlyregularhexagonandequilateraltrianglecanbecloselyplaced.Becauseoftheedgesofequilateraltriangle,heatdissipationisworsethanrectangle.So,hexagonalpansareadoptedafterallthediscussion.
Consideringthegapsnearboundaries,weplacethehexagonalpanscloselyattachedeachotheronthelongsideL.Therearetwokindsofprogramsasshownbelow.
Program1.
Program2.
Team#22599Page11of23
Obviously,Program2isbetterthanProgram1whenconsideringspaceutilization.Soscheme1isadopted.
Then,designasizeofeachhexagonalpantomakethehighestspaceutilization.Withtheaimofutilization,hexagonalpanshastobeplacedcontactcloselywitheachotheronbothsides.Itisnecessarytoassumeaaspectratiooftheoventoworkoutthenumberofpans(N).
Assumethatthesidelengthofaregularhexagonisa,thelength-widthratiooftheovenisλand∆Listheincrementindiscretization.Becausethenumberofpanscannotchangecontinuouslywhenn∈(m,m+1),m=1,2,3⋅⋅⋅,theequationswouldbeasfollows.
⎧W⎪5=a⎪
⎪0 ⎪W=λ⎪ ⎪L+k⋅∆L⎪N0=8,L0=W⎪ ⎡⎤⎪ ⎢L−W⎥⎪ ⎥⎪n=⎢3⎢⎥⎪⋅a⎢⎥⎪⎣2⎦⎩ n−1⎧ N=N+3⋅+1n=2k−1,k=1,2,3⋅⋅⋅0⎪⎪12Result:⎨ ⎪N=N+3⋅nn=2k,k=1,2,3⋅⋅⋅20⎪⎩2 WhereN1representsthenumberofpanswhennisodd,N2representsthenumberofpanswhenniseven.Thespecificnumberofpansisdependedonthewidth-lengthratioofoven. Thesecondpart. Maximumtheheatdistributionofthepans.Wedefinetheaverageheat(H)astheratiooftotalheatandtotalareaofthepans.Aimingtogetthemostaverageheat,wesetthewidth-lengthratiooftheovenλ.Spaceutilizationisnotconsideredhere.AconclusioniseasytodrawfromFigure8thatasquareareaintheovenfrom150mmto350mminlengthsharesthemostheatevenly.Sothepansshouldbe Team#22599Page12of23 placedmainlyinthisarea.Frommodel1weknowthatthecornersoftheovenareapttogatherheat.Besides,fourmorepansareaddedinthecornerstoabsorbmoreheat.Becauseheatabsorbingistheonlyaim,thereisnoneedtoconsiderspaceutilization.Circularpanscandistributeheatmoreevenlythananyothershapeduetomodel1.SocircularpansareusedinFigure17. Figure8. Figure17. Wesettheheatofthepansinthemostheatedarea(themiddlerow)asQ.Pansinthecornersreceivemoreheatbutuneventheoretically.AndthesquareofthefourpansinthecornersissosmallcomparedwiththetotalsquarethatwesettheheatofthefourasQtoo.Whenthelengthofoven(L)increases,thenumberofpansincreasestoo.Itmakesthesquareofthegapsbetweenpansbigger,meanwhile.Ifeachpanhasasameradius(r)andsquare(A),theequationaboutaverageheat,length-widthratioandnumberofpanswouldbe(7). Team#22599Page13of23 ⎧13r=⋅⋅W⎪ 45⎪ ⎪A=π⋅r2⎪ ⎪0 L+k⋅∆L⎡L+k⋅∆L⎤⎪0≤−⎢⎨⎥<1WW⎣⎦⎪ ⎪W=λ⎪ L+k⋅∆L⎪ ⎪N0=7;L0=W⎪ ⎪n=⎡L−W⎤ ⎢2⋅r⎥⎪⎣⎦⎪ ⎪N=N0+n⎪⎩k=1,2,3... (7) Herewegetthemostaverageheat(H): 400QH=⋅2 9πWThethirdpart. Wediscussedtwodifferentplansinthepreviouspartsofthepaper.Oneisaimedtogetthemostaverageheat,whiletheotheraimedtoplacethemostpans.Thetwoplansarecontradictorywitheachother,andcannotbeachievedtogether. Firstly,theweightofplan1isPandtheweightofplan2is1−P.Obviously,thiskindoptimizationhasdifficultyinsolvingandunderstanding.Soweturntoanotherwaytomakeitaeasierandlinearquestion.IthasbeensetthatthewidthoftheovenisaconstantWandthereshouldbethreepansatmostinverticaldirection.WemaketheweightPaproportionofthetwoplans.ThusthetwoplanscouldbeachievedtogetherduetoproportionPand1−P,asshowninFigure18. Figure18. Team#22599Page14of23 Asbeentoldinmodel1,thecornershaveahighertemperaturethanotherpartsoftheoven.Soplan1isusedindistrict1(inFigure10)andplan2isusedindistrict2(inFigure10).Abettercompromisecouldbereachedinthisway,asshowninFigure19. Figure19. EverypanhasasquareofA.Radiusofcircularonesisr.Sidelengthofregularhexagonisa. π⋅r2= 332 ⋅a2 ⇒a:r=1.1(8) Basedontheequation(8),ifthepansareplacedasshowninFigure19,regularhexagonsareplacedfullofdistrict1,thecircularoneswillbeplacedbeyondtheborderline.Ifthecircularonesareplacedfullofdistrict2,therewillbemoregapsindistrict1,whichwillbewasted.SowechangeourplanofplacingpansasFigure20. Figure20. Thenumberofcircularonesdecreasesbytwo,butthespaceindistrict1isfullyused,andnopanwillbeplacedbeyondtheborderline. WeassumethatPisbiggerthan1−P,sothat,theheatindistrict1willbefullyused.Bysimplecalculating,weknowthattheratiooftheheatabsorbedincircularpan(H1)andinregularhexagon(H2)is1.2:1. Team#22599Page15of23 Figure21. So,basedonthepansplacingplan,aequationonheatcanbegotasfollow: ⎧3a≈r=x;⎪2⎪⎪33 ⋅a=π⋅r2⎪A=2⎪⎪W0<<1⎪ L⎪ ⎪L=L0+k⋅∆L⎪∆L=x⎪⎪L+k⋅∆L⎡L+k⋅∆L⎤ −⎢⎨0≤⎥<1WW⎣⎦⎪ ⎪W=λ⎪ L+k⋅∆L⎪ ⎪N0=9,L0=W⎪ ⎪n=⎡P⋅L−W⎤⎪1⎢x⎥⎣⎦⎪ ⎪n=⎡(1−P)⋅L−W⎤⎪2⎢x⎥⎣⎦⎪ ⎩k=1,2,3... (9) Team#22599Page16of23 Resolution: n1−1⎧ N=N+2⋅n+3⋅+1(n1=2k−1)02⎪1 2 ⎪ ⎪N=N+2⋅n+3⋅n1 (n1=2k)12 ⎪22⎪n−1⎪(5+1⋅3)⋅Q+1.2Q⋅(4+2⋅n2)⎪2⎨H1= N1⋅A⎪ ⎪n1 (5+⋅3)⋅Q+1.2Q⋅(4+2⋅n2)⎪ 2⎪H2= N2⋅A⎪ ⎪k=1,2,3...⎪⎩ (10) N1andH1meansthenumberofpansandaverageheatabsorbedwhennisodd.N2andH2meansthenumberofpansandaverageheatabsorbedwhenniseven.Forexample: (1)Whenλ=0.37,P=0.6: QN=16,H=1.075.Thebestplacingplanis: A(2)Whenλ=0.37,P=0.7: QN=18,H=1.044⋅.Thebestplacingplanis: ATeam#22599Page17of23 (3)Whenλ=0.58,P=0.6: QN=12,H=1.067⋅.Thebestplacingplanis: AAconclusioniseasytodrawthatwhentheratioofwidthandlengthoftheoven(λ)isaconstant,thenumberofpansincreaseswithanincreasingP,buttheaverageheatdecreases(example(1)and(2)).WhentheweightPisaconstant,thenumberofpansdecreaseswithanincreasingλ,andtheaverageheatdecreasesalso.So,theactualplanshouldbebaseonyourspecificneeds.Conclusion Inconclusion,ourteamisverycertainthatthemethodwecameupwithiseffectiveinheatdistributionanalysis.Basedonourmodel,themoreedgesthepanhas,themoreevenlytheheatdistributeon.Withthediscretize-convertapproach,weknowthatwhentheratioofwidthandlengthoftheoven(γ)isaconstant,thenumberofpansincreaseswithanincreasingP,buttheaverageheatdecreases.WhentheweightPisaconstant,thenumberofpansdecreaseswithanincreasingγ,andtheaverageheatdecreasesalso.So,theactualplanshouldbebaseonyourspecificneeds. Strengths&Weaknesses Strengths .•DifficultiesAvoidedAvoided. Inmodel1,weturntoanotherwaytoworksimulatetheheatdistributioninsteadofworkonheatconductiondirectly.Firstly,wesimulateheatradiationnotheatconductiontokeepawayfromthesophisticatedpartialdifferentialequations.Then,wecreateauniquemethodtoconverteveryvariablefromthewholespacetosection.Inotherwords,weworkeverythingoutinheatradiationandconvertthemintoheatcontradiction. Team#22599Page18of23 •ClosetoReality. Ourmodelconsidersboththethermalradiationandsurfacereflection,whichisrelativelyclosetotheactualsituation. •FlexibilityProvided. Ouralgorithmdoesagreatjobinflexibility.Theheatdistributionmaponsectionsareinterceptedfromtheheatdistributionmapsoftheentirespace.Allshapesofsectionscanbeusedinthealgorithm.Theheatdistributioninthewholespaceisgeneratedbasedonthelocationoftheelectricalheatingtubesandthedecaycurveoftheheat,whichcanbemodifiedatanytime. •Innovation. Basedonourmodel,thespaceofanovencanbedividedintosixpartswithdifferentheardistribution.Inordertomakefulluseoftheinnerspace,weinventanewpanwhichallowsuserstocooksixdifferentkindsoffoodatsametime.Anadvertisementispublishedintheendofthepaper. Weaknesses ’sThermalConductivityIgnored.•PanPan’ Theheatcomesfromnotonlytheelectricalheatingtubes,butalsoheatconductionofthepansthemselves.Butthepan’sthermalconductionisignoredinthemodel,whichmaycauselittleinaccuracy. .•ThermalConductivityofElectricalHeatingTubesIgnoredIgnored. itisassumedthattherearetwoelectricalheatingtubesintheovenandplacedinaspecificlocation.Theinitialtemperatureofthetubesisadesiredconstanttemperature.Inotherwords,thetimeelectricalheatingtubesspendtoheatingthemselvesisignored.Thesimplificationcancausesomeinaccuracy. .•Linearsimplificationsimplification. Inmodel2,thelengthoftheovenisdiscretized,sothatthenumberofpanswillchangeslinearly.calculatingthroughsimpleintegerlinearmethod.Thiswillleadtotheresultofourmodelisnotaccurateenough.Application Wehavediscussedtheheatdistributionintheoveninmodel1.Theheatdistributionisshowninfigure1andfigure2. Team#22599Page19of23 Figure1 Figure2 Asshown,theedgesoftheovenaredistributedthemostheat.Areasonbothsidesofthe,isdistributedtheleastheat.Whilethemiddleareaabsorbslittlelessthantheedges.So,wecanseparatetheovenareaintosixparts,asshownbellow. Team#22599Page20of23 Part1andpart2aredistributedtheleastheatandlocatedthefurthestfromtheheatsource(theelectricalheatingtubeslocateonthebottomoftheoven).Sothesetwopartsabsorbtheleastheat.Part3andpart4aredistributedtheleastheatbutlocatingthenearesttotheheatsource.Part5locatedfarfromthebottombutdistributedthemostheat.Sosimply,weregardtheheatofpart3,part4andpart5asthesame.Part6isdistributedthemostheat,andlocatingnearesttothebottom.So,theheatpart6absorbsisthemostintheoven. Basedonourconclusionabove,weinventtheiPan,anewcombinedpan,whichcanbakethreekindsoffoodatthesametime.Forexample,onewantstohavealittlebread,piecesofsausage,achickenwingandapizzaforlunch.Hewillhavetowait30minutesatleastforhislunch,ifhejusthasoneoven.AstheChinesesayinggoes,‘Bearpawsandfishnevercometogether’. ByusingiPancansolvetheissueforhim,hecouldputthebreadinpan1,pizzainpan2,sausageinpan5andchickenwinginpan6,andpoweron.Thus,hecanhavehisdeliciouslunchinatleast10minutes.So,bearpawsandfishcometogether.WemakeanadvertisementforBrownieGourmetMagazineintheendofthepaper.AdvertisingSheets Team#22599Page21of23 Team#22599Page22of23 References [1]HeatRadiation,http://wenku.baidu.com/view/f5ed1619cc7931b765ce1599.html,Page.4 [2]G.S.Ranganath,Black-bodyRadiation, http://link.springer.com/article/10.1007%2Fs12045-008-0028-7?LI=true#,February,2013 [3]KaiqingLu,TheChemicalBasisofHeatTransfer,JournalofHigherCorrespondenceEducation(NaturalSciencesEdition),Vol.3:p.33,1996 [4]MarkM.Meerschaert,MathematicalModeling(ThirdEdition),China:ChinaMachinePress,May.2009 [5]JianzhongZhang,MonteCarloMethod,MathematicsinPracticeandTheory, Team#22599Page23of23 Vol.1p.28,1974 [6]Shallowwaterequations,http://en.wikipedia.org/wiki/Shallow_water_equations 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuowenda.com 版权所有 湘ICP备2023022495号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务