您好,欢迎来到花图问答。
搜索
您的当前位置:首页TH4034C

TH4034C

来源:花图问答


THALES ELECTRON DEVICES

RFMS-V

Radio Frequency Microwave Sources Vélizy

ENGINEERING METHOD

Creation : October 11, 2007

TH 4034C

Reference : CA 4034C Version : -

580 1/19

TECHNICAL SPECIFICATION OF THE TH 4034C

1 - GENERAL : 1.1. DEFINITION OF TYPE :

Product type : Helix Traveling-Wave Tube

Frequency band : 43.5 GHz to 45.5 GHz RF output power : 100 W CW minimum PPM beam focusing Dual stage collector Conduction cooled

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

2/19

1.2. NOTES :

All voltages are referenced with respect to the cathode unless otherwise stated.

The symbol *, when used, means that the final value will be specified in a later edition of the specification.

The MIL-PRF-1 equivalents of the symbols used are given in annex :

N.A. = Not applicable vn nominal value w.r.t.g. = with respect to ground

2. APPLICABLE DOCUMENTS :

- Standards : NF C 95-201 (standard equivalent to MIL-E-1) NF X 02-201 / 02-203 / 02-204 / 02-205/ 02-206 (basic standards, magnitudes and units) MIL-STD 1311, MIL-STD 810F, MIL-STD 202F

- Packing : according to norm GAM-EMB. 1 (French document equivalent of MIL-E-75) =

In the event of a dispute, this specification prevails over the documents mentioned above.

3 - OPERATING CHARACTERISTICS :

This chapter defines all characteristics that the product and equipment must satisfy to comply with the planned use.

3.1. INTERFACES :

Dimensions : see outline drawing. Weight : 2.2 kg approximately Mounting position : any Electrical connections : High voltage connections : Flying leads Low voltage connector : 9-Pins M24308/4-1P

RF connections : modified square flange UG-599/U with R400 waveguide (WR22)

Cooling : by conduction through the baseplate.

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

3/19

3.2. OPERATING PARAMETERS :

The table hereafter defines the values of the operating parameters with the following definitions :

3.2.1. Nominal values :

In this column are given the operating parameters values to comply with the performances specified in § 3.3.1

3.2.2. Operating range :

The TWT can be used continuously with the parameters varying around the nominal value, inside the operating range, but some performances may be slightly out of specified limits.

3.2.3. Absolute rating limits (NF C 95-201 – art. 1.3.2)

This paragraph defines absolute \"maximum\" and minimum\" operating parameters values which must never be exceeded. Operation beyond these limits can damage the TWT and void the warranty.

The designer of equipment using this TWT must ensure that the safety margins will not allow any of the absolute ratings to be exceeded at any time, including variation of the supply voltages, variations in load or variations in the manufacture of the equipment itself.

The \"maximum\" and \"minimum\" values correspond respectively to the maximum and minimum of the absolute value of the characteristic, independently of its polarity.

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

4/19

Operating Absolute Absolute

Parameter Symbol Unit rating min. Min. Nominal Max. rating max.

Notes

Heater voltage Vf

setting range V - 4.5 vn 6.5 - 1 – 2 nominal limits V vn – 0.2 vn – 0.1 vn vn + 0.1 vn + 0.2 3 Heater current If A - 0.4 - 0.8 - 1 Heater surge current Ipdf A - - - - 1.5 3 Warm-up time tk s 180 180 - - - 3 Helix voltage Vh setting range kV - 13 vn 14 - 1 nominal limits V vn – 200 vn – 40 vn vn + 40 vn + 200 5 Helix current Ih mA - - - 2.5 3.5 1-5 Helix energy dissipation Wh J - - - - 2 5 Collector 1 voltage Vc1 % Vh34 35 36 38 40 1 – 5 Collector 1 current Ic1 no drive mA - 1 - - - 1 with RF mA - - - 70 - 1 Collector 2 voltage Vc2 % Vh16 17 18 20 22 1-5 Collector 2 current Ic2 no drive mA - - - 110 - 1 with RF (sat.) mA - 25 - - - 1 Voltage between Helix and kV - - - - 10 - ∆V

Collector 1

Voltage between Helix and

kV - - - - 12.5 - ∆V

Collector 2

Voltage between Collector 1

kV - - - - 6 - ∆V

and Collector 2

Beam Control Electrode voltage VBCEb V -1050 -1000 -800 -775 -750 1-5 (Beam-Off)

Beam Control Electrode voltage VBCEc (Beam-On)

1 - -5 vn -50 - V setting range 5 vn+2 vn+1 vn vn -1 vn -2 V nominal limits Beam Control Electrode current IBCE mA -0.5 -0.2 0 0.2 0.5 1 Anode voltage (w.r.t.g) Va V 100 125 150 175 200 1-4-5 Anode current Ia mA -0.5 -0.2 0 0.2 0.5 1

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

5/19

Operating Absolute Absolute

Parameter Symbol Unit rating min. Min. Nominal Max. rating max.

Notes

Cathode current Ik mA -

RF frequency band f GHz 43.3 RF drive power (large signal Pe operation) setting range - dBm nominal limits - dBm RF load VSWR - - - Baseplate operating temperature te °C -40 Ambient temperature storage ta °C -40 External magnetic induction - T - Thermal dissipation \"no drive\" or Pp W -

\"with RF\"

Prime power with RF Pa W - Run-time meter voltage - Vdc 10

- 43.5 4 vn-1 - -20 - - - - 12

- - vn vn - - - - - - 24

110 45.5 10 vn+1 1.2:1 90 70 - 300 450 28

- 45.7 - vn+3 1.5:1 95 - 1.10-3 - - 34

1 1 1 6 8-9 17-18 - 7 12 12 -

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

6/19

3.3. PERFORMANCES : 3.3.1. Electrical and RF :

Under the conditions given in table § 3.2.2, the specified performances of the product are the following :

Limits

Characteristics Symbol Unit Notes

Min. Max. Input VSWR (non operating) ROS - 2.0:1 - - Output VSWR (non operating) ROS - 2.0:1 - - Large signal operation : Output power (Pe = vn) Ps W 100 150 1 Output power variation (full band) dB - 1 1-11 ∆Ps

Small signal operation : (test condition: Ps = 12 W at f = 44,5 GHz)

1 55 45 dB Gss Small signal gain

1-11 3 - dB Small signal gain variation (full band) ∆Gss

1-11 0.02 - dB/MHz Small signal gain slope ∆Gss/∆f

Noise power density Pb dBm/MHz- -20 14 Third order intermodulation : Ps1 + Ps2 = 60 W IM3 dBc - -15 13 Ps1 + Ps2 = 12 W IM3 dBc - -29 13 AM/PM conversion Ps > / = 100 W kp °/dB - 5 - Ps < / = 10 W kp °/dB - 2 - nd2 harmonic level / fundamental Psh2/Psf dBc - -15 10 Spurious outputs - dBc - -60 15 Helix voltage sensitivity (Vh = Vn ± 40 V)

(large and small signal operation)

- 1 - °/V ∆ϕ/∆Vh Output phase

- 0.005 - dB/V Output power ∆Ps/∆Vh

Collector voltage sensitivity (Vc = Vn ± 1%)

(large and small signal operation)

- 0.01 - °/V ∆ϕ/∆Vc Output phase

- 0.0005 - dB/V Output power ∆Ps/∆Vc

Anode voltage sensitivity (Va = Vn ± 25 V)

(large and small signal operation)

- 0.05 - °/V ∆ϕ/∆Va Output phase

- 0.005 - dB/V Output power ∆Ps/∆Va

Beam control sensitivity (VBCEc = Vn ± 1 V)

(large and small signal operation)

- 5 - °/V Output phase ∆ϕ/∆VBCEc

- 0.2 - dB/V Output power ∆Ps/∆VBCEc

Temperature gain sensitivity dB/°C - 0.02 - ∆G/∆t Gain stability dB/24 h - 16 ∆G ± 0.2

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

7/19

3.3.2. Environmental Conditions :

The product withstands the following environmental constraints without damage

Reference Constraints Conditions Tube non operating Vibrations :

Post-test inspection : Random

MIL-STD 810F

- Frequency f = 44.5 GHz 50-2000 Hz Method 514.5

- Output power Ps > 100 W 5 grms

- Helix current Ih < 2.5 mA Test duration : 1 hour in each of 3 axes

Tube non operating Shocks : Post-test inspection : Waveform : half-sine pulse

MIL-STD 202F

- Frequency f = 44.5 GHz Acceleration : 30 g

Method 213B

- Output power Ps > 100 W Duration : 11 ms ± 2 ms

- Helix current Ih < 2.5 mA Test : 3 shocks in both directions of the 3 axes (18 shocks)

Damp heat storage : Tube non operating

Post-test inspection : Ambient temperature : +50°C ± 2°C

- Frequency f = 44.5 GHz Humidity : 95%

- Output power Ps > 100 W Test duration : 2 hours

- Helix current Ih < 2.5 mA

High temperature storage : Tube non operating Temperature : +70°C Post-test inspection : MIL-STD 810F

Method 501.4 Test duration : 7 hours - Frequency f = 44.5 GHz Procedure I - Output power Ps > 100 W

- Helix current Ih < 2.5 mA

Low temperature storage : Tube non operating Temperature : -40°C Post-test inspection : MIL-STD 810F

Method 502.4 Test duration : 7 hours - Frequency f = 44.5 GHz Procedure I - Output power Ps > 100 W

- Helix current Ih < 2.5 mA Tube non operating Altitude : Post-test inspection : Pressure : 15 kPa (15000 m) MIL-STD 810F

Method 500.4 - Frequency f = 44.5 GHz Test duration : 1 hour Procedure I - Output power Ps > 100 W

- Helix current Ih < 2.5 mA Tube operating Altitude : Test inspection : Pressure : 57 kPa (4500 m) MIL-STD 810F

Method 500.4 - Frequency f = 44.5 GHz Test duration : 1 hour Procedure II - Output power Ps > 100 W

- Helix current Ih < 2.5 mA

Temperature : Tube operating Cycle as described on note 18 Inspection during and after MIL-STD 810F

the test : Method 501.4 &

502.4 - Frequency f = 44.5 GHz Procedure II - Output power Ps > 100 W

- Helix current Ih < 2.5 mA

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

8/19

3.3.3. End of-life criterion :

Ps < 80 W

4. QUALITY ASSURANCE :

4.1. ACCEPTANCE

Each product is controlled individually according to the Acceptance Test Procedure (ATP) and the results are noted in the associated Acceptance Test Report (ATR).

4.2. SAFETY – HEALTH :

See note TED 807

5. OPERATING NOTES :

NOTE 1 - For each tube, the values entered in the Acceptance Test Report must comply with the operating

range limits specified in the present document.

NOTE 2 - The tube common cathode-heater terminal is to be returned to the positive side of the DC heater

power supply.

NOTE 3 - Preheating time is specified as the elapsed time between the instant when the heater voltage reaches

90% of its nominal value and the instant when the beam is switched-on.

Heater power circuit must be designed to respect the specified max absolute rating value for the

surge current.

For optimum cathode lifetime, it is not recommended to stay the TWT during long stand-by (cathode

heated without beam-on). The stand-by period should be limited to 30 minutes or heater voltage to be reduced of -0.3 V after this period.

After a long storage period (> 1 month) or start-up with low temperature environmental conditions (-40°C to 0°C) it is recommended to increase the preheating time (300 s minimum instead of 180 s)

before the beam is switched-on.

NOTE 4 - The anode voltage (ion trap) is positive and with respect to helix-ground. It must be established

previously the beam is switched-on.

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

9/19

NOTE 5 - The TWT is designed to be switched-on & off by the Beam Control Electrode voltage.

a) Turn-on procedure :

1) Apply heater, anode and BCE \"beam-off\" voltages first. When absolute value of BCE

\"beam-off\" voltage is equal to or greater than 95% of its nominal value, then apply all other voltages (helix and collectors).

2) Wait for completion of minimum required preheating time (see Note 3).

3) When all voltages have attained their steady state values and preheating time is achieved, the

BCE voltage can be switched to nominal \"beam-on\" voltage.

The transient switching time must be as short as possible and limited to 1 ms. During BCE transient, the helix current shall be less than 20 mA.

Just after switching on the BCE, helix and collector voltages variations may occur but have to be limited inside the \"absolute rating range\" values.

b) Turn-off procedure :

1) Apply BCE \"beam-off\" voltage with transient switching time limited to 1 ms.

2) Then switch-off the other voltages. The BCE \"beam-off\" voltage must remain during all the

helix and collector voltages shutdown time.

C) Helix over current conditions :

If the helix current maximum absolute rating value is exceeded at any time, except during normal turn-on transients, an overcurrent trip should activate the turn-off procedure in less than 2 ms.

The helix overcurrent trip must be armed after the transient duration.

Above –20 °C the start-up helix current is 2.5 mA max, but between –40 °C and –20 °C it may reach between 2.5 and 3.5 mA at first start-up under cold condition.

If such operating temperature condition is required, a suitable helix trip level and transient duration may be defined or optimized.

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

10/19

d) - Power supply requirements :

1) The maximum energy stored in the helix voltage power supply must not exceed 2 Joule.

2) The turn-on and turn-off duration should not exceed 1 ms. The turn-on and turn-off

transients duration are defined in the following figure.

Helix voltage = Vh = Vnom Cathode voltage = -Vh timeVBCEc= Vnom VBCEc = Vnom –2 VBCEb = –750 VBCEb = –800 Turn-on, transient duration (1ms max)Turn-off, transient duration (1ms max)

BEAM CONTROL ELECTRODE VOLTAGE TRANSIENTS

NOTE 6 - RF drive power shall be removed if it exceeds the specified limit. No degradation in the TWT

performance characteristics or lifetime for : - an input signal up to vn + 3 dB.

- an input signal up to 15 dBm for duration of 3 milliseconds.

NOTE 7 - The maximum amount of externally originated magnetic induction within the tube volume shall not

be greater than 1 x 10-3 Telsa. The measurement of this parasitic induction shall be performed after removing the tube from its supporting mount. NOTE 8 - The absolute maximum operating load VSWR is 1.5:1. The RF output power performances are

specified into a load VSWR less or equal to 1.2:1 variable through all phases.

Out of the operating frequency band, load up to infinite is permitted.

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

11/19

NOTE 9 -

With no RF drive power, the tube is stable for any combination of input and output mismatches, any phase.

NOTE 10 - The harmonic level is not measured. The maximum limit is warranted.

NOTE 11 -

NOTE 12 -

NOTE 13 - NOTE 14 - NOTE 15 - NOTE 16 - NOTE 17 - The measurement is made at constant drive power, recording the data as a function of frequency. The thermal dissipation and the prime power are calculated at the nominal operating voltages (Vf,

Vh, Vc1, Vc2) and at full RF power using following formula :

- Prime power = > Pa = (Vf x If) + (Vh x Ih) + (Vc1 x Ic1) + (Vc2 x Ic2) - Thermal dissipation = > Pp = Pa – Pout Measurement is made using a spectrum analyzer with two equal carriers separated in frequency by

10 MHz at the specified total output power. The noise power density is measured using a spectrum analyzer in the operating frequency band,

with a 1 MHz resolution bandwidth and with no RF drive applied to the TWT. Except for coherent power supply sidebands, over a frequency range of 33 to 50 GHz.

At a fixed baseplate temperature with the input RF drive level and all other parameters hold constant,

the gain shall not vary by more than the specified value during any 24 hours period. Measurement at temperature reference point as indicated on TWT drawing. An internal thermal-switch protection is available between pins 2 and 3 of the low voltage connector.

This protection must be connected and operational before operating the tube. The contacts are normally closed and will open in the event of excessive TWT collector temperature.

Contacts are insulated with respect to ground and have 2A / 250V power cut capability.

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

12/19

NOTE 18 - The tube baseplate should be coated with high thermal conductivity grease and belted on heat

exchanger. The contact face of the heat exchanger should be rigid and free from surface irregularities greater than 0.15 mm peak to peak. The TWT shall be bolted, tightly, to the heat sink at all mounting hole locations.

The cooling must be sufficient to limit the temperature at the thermal reference point (see outline

drawing).

RF test inspection Temp.

+70°C

Ambient

-20°C time (minutes) -40°C

60 120 180 240 300 360 non operating operating Tube thermal reference point.

6 - DRAWINGS AND ANNEX DOCUMENTS

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

13/19

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

14/19

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

15/19

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

16/19

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

17/19

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

18/19

THALES ELECTRON DEVICES

TH 4034C

Reference : CA 4034C

580

Version : - Creat : October 11, 2007

19/19

Correspondance des Symboles français MIL-PRF-1 Correspondance between french Symbols MIL-PRF-1

(\"-\"Symboles non précisés par la MIL-PRF-1) (\" - \" : no specified symbols by MIL-PRF-1)

Cin Input capacitance Ce Capacité d'entrée Pecr Puissance RF crête pd. pi Peak drive (or input) Grid-anode capacitance Cga Capacité entre grille et d'entrée (rf) power anode Pg Puissance dissipée grille - Grid power dissipation Grid-cathode capacitance Cgk Capacité entre grille et Ppi Puissance sur pompe - Ion-pump power input cathode ionique dissipation

capacitance Cs Capacité de sortie Cout Output Prcr Puissance réfléchie par - Load reflected power

Duty cycle, product of D Facteur d'utilisation Du la charge

pulse length by repetition Ps,Psmoy Puissance sortie moy. Po Average output power rate Pscr Puissance de sortie crête po Peak output power Li Insertion loss dP Perte d'insertion Rfk Résistance filamt-cathode - Heater-cathode resistance - Efficiency standing wave ROS Rapport d'ondes station VSWR Voltage η Rendement

F RF frequency ratio naires f Fréquence RF

NF Noise figure (mechanical) T Couple (mécanique) - Torque FB Facteur de bruit

prr Pulse recurrence - Duration (or length) or t, t1 Durée ou temps fr Fréquence de répétition

(repetition) rate time

G Gain TA Ambient temperature Ta, ta Température ambiante G Gain

la Anode current or dc anode (normale (normal or specified) ou spécifiée) la.lactu Courant (continu) d'anode

current trc Time of rise of current tci Temps de croissance du

ib Peak anode current. courant pulse (magnetron) (magnétron) lacr Courant crête d'anode

excluding spike trv Time of rise of voltage tcV Temps de croissance de

lb dc collector current tension pulse Icol Courant (continu) de

- Start-up period td Temps de démarrage collecteur

collector current - Recovery time tdi Temps de recouvrement Icolcr Courant crête de collecteur ib Peak

- dc body current (désionisation) Ict Courant continu corps - Peak body current tfc Time of fall of current tdi Temps de décroissance Ictcr Courant crête corps

- Filament or heater current pulse du courant if Courant de chauffage, tfv Time of fall of voltage tdV Temps de décroissance filament

lhk Heater-cathode leakage pulse de tension lfk Courant de fuite filament

current TE,TF Envelope or flange Te, te Température au point cathode

Isol dc solenoid current temperature at the spécifié ou le plus chaud Ifoc Courant de bobine

specified or hottest point d'enceinte, de bride focalisateur

lg dc/rms value of ac tk Cathode preheating time tk Durée de préchauffage Ig, Ig1 Courant continu de grille,

component of grid current, cathode de grille 1

grid 1 duration tp Durée d'impulsion tp Pulse

ic Peak grid current tpc Current pulse duration (or tpl Durée de l'impulsion Igcr Courant crête de grille

lw dc helix current length) de courant lh, il Courant continu d'hélice,

trf RF pulse duration (or tpRF Durée de l'impulsion RF ligne

iw Peak helix current length) lhcr,ilcr Courant crête d'hélice, de

- Voltage pulse duration (or tpV Durée de l'impulsion ligne

Ik dc cathode current de length) tension ik Courant continu cathode ik Peak cathode current Eb dc anode voltage Va Tension continue anode Ikcr Courant crête cathode

- Intermodulation ratio eb Peak anode voltage Vacr Tension crête d'anode IM3 Rapport d'intermodulation - Peak filament of heater Ece dc collector voltage Vcol Tension continue collectr Ipdf Courant de pointe

(surge)current eb Peak collector voltage Vcolcr Tension crête collecteur démarrage filament

dc ion-pump current - dc body voltage Vct Tension continue corps Ipi Courant continu de pompe -

- Peak body voltage Vctcr Tension crête corps ionique

- Coolant flow Rate of rise of voltage vcV Vitesse de croissance rrv j Débit fluide de

pulse impulsion de tension refroidissement

- Perveance Ef Filament or heater voltage Vf Tension filament, de K Pervéance

- Pressure, ambient pressure chauffage p, pa Pression, pression

Ehk Heater-cathode voltage Vfk Tension filament-cathode ambiante

Pp Average anode power Esol dc solenoid voltage Vfoc Tension continue de Pa Puissance moyenne

dissipation focalisateur dissipée d'anode

- Average beam power Ec, Ec1 dc grid voltage, grid 1 Vg, Vg1 Tension continue de Pa, Puissance moyenne de

grille, de grille 1 Pamoy faisceau

- Peak anode power Eco dc cut-off grid voltage Vgb Tension grille blocage Pacr Puissance crête d'anode dissipation Egy Peak grid voltage Vgcr Tension crête de grille

- Peak beam power Ew dc helix voltage Vh, VI Tension continue d'hélice, Pacr Puissance crête faisceau Pp Average collector power de ligne Pcol, Puissance moyenne

dissipation ew Peak helix voltage Vhcr,Vlcr Tension crête d'hélice, Pcolmoy collecteur

- Peak collector power de ligne Pcolcr Puissance crête sur

dissipation - ignitor voltage Vi Tension électrode collecteur

Average body power d'ionisation Pct Puissance moyenne sur le -

dissipation Monitoring voltage Vj Tension d'ouverture - corps

- Peak body power volets (TR) Pctcr Puissance crête sur le

dissipation - dc cathode voltage Vk Tension continue cathode corps

Average drive power or - Peak cathode voltage Vkcr Tension crête cathode Pe, Puissance d'entrée Pd. Pi

(rf) average RF input power Eip dc ion-pump voltage Vpi Tension continue, pompe Pemoy moyenne ou puissance

ionique

voltage Vr Tension réflecteur Er Reflector

W Energie - Energy

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuowenda.com 版权所有 湘ICP备2023022495号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务