一. 实验目的
(1)掌握光抽运和光检测的原理和实验方法,加深对原子超精细结构、光跃迁及磁共振的理解。
(2)测定铷同位素Rb和
85
87
Rb的gF因子、地磁场垂直和水平分量。
二、实验原理
光泵磁共振就是用光来检测和发现磁共振。这种磁共振可发生在一组塞曼能级之间或超精细结构之间,而不限定原子或分子是处于基态还是处于激发态,由于光子能量是射频量子能量的10~10倍,通过检测光子来探察射频量子的吸收或发射容易得多。
1、铷原子基态和最低激发态的能级
8587
天然铷中含量大的同位素有两种:Rb占72.15%,Rb占27.85%。
由于电子轨道总角动量PL与自旋总角动量PS的LS耦合,使原子能级具有精细结构,用电子的总角动量量子数J表示:J=L+S,„,|L—S|。铷的基态,轨道量子数L=0,自旋量子数S=1/2,只有J=1/2一个态52S1/2。铷原子的最低激发态,轨道量子数L=1,自旋量子数S=1/2,则有双重态52P3/2态J=3/2和52P1/2态J=1/2。
已知核自旋I=0的原子的价电子LS耦合后,总角动量PJ与原子总磁矩μJ的关系为:
μJ=–gJePJ/(2me) (13-1)
J(J+1)—L(L+1)+S(S+1)
gJ=1+ ─────────────── (13-2) 2J(J+1)
但铷原子的核自旋I≠0。所以核自旋角动量PI与电子总角动量PJ耦合成原子总角动量PF,有PF=PJ+PI,耦合后的总量子数是F=I+J,„,|I—J|。87Rb的基态J=1/2、I=3/2,有F=2和F=1两个状态。85Rb的基态J=1/2,I=5/2,则有F=3和F=2两个态。把F量子数表征的能级称为超精细结构能级。原子总角动量PF与总磁矩μF之间的关系(见本实验附录)为:
μF=–gFePF/(2me)
F(F+1)+J(J+1)—I(I+1)
gF=gJ ─────────────── (13-3) 2F(F+1)
铷原子在磁场中的超精细能级产生塞曼分裂,可用磁量子数mF标定。mF=F,F—1,„,(—F),即分裂成2F+1个塞曼子能级。在磁场中铷原子基态和最低激发态的能级如图13-1所示。
原子总磁矩μF与磁场B0相互作用能为(诸圣麟,1979):
e e
6
7
E=—μFB0= gF──PFB0= gF──mFB0h (13-4) 2me 2me
e e
分别令:μB=──h(玻尔磁子)和γ=—gF──(旋磁比),则有: 2me 2me
E=—γmFhB0=gFmFμBB0 由此可知外磁场为B0时,相邻塞曼子能级之间的能量差为:
△E=gFμBB0 (13-5) 可见在此磁场中△E与B0成正比,当B0=0时,各塞曼子能级简并为原来的超精细能级。对在弱磁场B0的情况下,这个系统存在三种可能的跃迁过程,即在超精细能级之间的α型跃迁,其跃迁频率ω0与B0成正比,在射频范围有ω0=|γ|B0;在两个不同次能级之间的β型跃迁,跃迁频率在微波范围;发生在基态与激发态之间的δ型跃迁,其跃迁频率落在近红外范围。光泵磁共振是利用α、δ两种辐射跃迁。
2、光抽运效应
由于光的电场部分的作用,一定频率的光可以激发原子间的跃迁。已知铷原子52P1/2→52S1/2跃迁时产生D1线,波长为794.8nm,52P3/2→52S1/2的跃迁产生D2线,波长为780nm。当用入射光为左旋圆偏振的D1光(即D1σ+光)照射87Rb时,52S1/2态的原子会跃迁到52P1/2
态的有关塞曼子能级上。这个过程满足跃迁的选择定则:△L=±1;△F=0,±1;△mF=0;±1(对于左旋圆偏振光吸收的选择定则是△mF=—1),即基态上量子数为mF的原子,将吸收偏振光能量,跃迁到量子数为mF=+1的激发态能级上去,原子被激发至高能级后,又会通
2
过自发辐射发射一定波长的电磁波,从而以几乎相等的几率落回到基态,这样在基态5S1/2中,mF=+2子能级上的原子不能吸收偏振光跃迁到激发态,即其跃迁几率是零。由于落在基态mF=+2上的粒子不能向上跃迁,而落在基态其他子能级上的粒子继续吸收σ光子向上跃迁,这样经过多次循环,基态mF=+2子能级上的粒子数会大大增加,可形象地认为有大量粒子被“抽运”到基态的mF=+2的子能级上,形成了所谓的“光抽运”效应。
光抽运的目的就是要使各子能级上的粒子数产生不均匀分布,即“偏极化”。有了偏极化,就可以在子能级之间得到较强的磁共振信号。它是指在基态中其它超精细能级上的原子数逐渐减少,继续下去就会妨碍激发过程的进行,使对光的吸收慢慢停止,最终是光的吸收达到饱和,这时透过样品的光变得最强。
3、弛豫过程
基态子能级上的粒子数在热平衡状态时遵从玻尔兹曼分布,此时各子能级上粒子数可近似地认为是相等的,子能级间的能量差也很小,考虑抽运的作用,各子能级上的粒子数会出现差异,从而使系统处于非热平衡分布状态转变为热平衡分布的过程。
失去偏极化的主要原因是由于铷原子与器壁碰撞,可采用在样品泡中充进缓冲气体的方法减少这种碰撞,以保持原子的高度偏极化。但缓冲气体分子不可能将子能级之间的跃迁全部抑制,不能将粒子全部抽运到mF=+2的子能级上。通常是光抽运造成塞曼子能级之间的粒子差数比玻尔兹曼分布造成的粒子差数要大几个数量级。
D1σ+光对85Rb的光抽运效应是将85Rb原子抽运到基态的mF=+3的子能级上。 4、磁共振与光检测
在弱磁场中B0中,铷原子相邻塞曼子能级的能量差已由(13-5)给出。为了破坏光的吸收达到饱和,保证激发过程能继续进行,在垂直于恒定磁场B0的方向加一角频率为ω的射频场B1,若该射频场的频率对应α跃迁,有:
hω=△E= gFμBB0
即:
ω= gFμBB0/h (13-6)
塞曼子能级之间将产生磁共振。被抽运到mF=+2子能级上的大量粒子在射频场B1作用下产生感应跃迁,由mF=+2跃迁到mF=+1,进而跃迁到mF=0,„等基态中其它超精细能级上,这时δ吸收跃迁又可以继续进行了,透过样品的光通量又变小了。同时,基态中处于非mF=+2子能级的原子又将被抽运到mF=+2子能级上,感应跃迁与光抽运将达到一个新的动态平衡,此时基态非mF=+2子能级上的粒子数大于没有共振时的粒子数,从而对D1光的吸收增大。
光检测技术就是利用磁共振时伴随有D1光强的变化,通过测D1光强的变化来实现共振信号的观测。由于巧妙地将一个低频射频光子(1~410MHz)转换成了一个高频光频光子(108 MHz),这就使信号功率提高了7~8个数量级。
测量磁场B0时,可调节射频场的频率,观察透过样品后的强度,当透过的光最弱时,射频场的频率正对应α跃迁频率,即可求出B0。
+
3.实验内容:
1准备:
在装置加电之前,先应进行主体单元光路的机械调整(见本说明书安装和调整部分)。 再借助指南针将光具座与地磁场水平分量平行搁置。检查各联线是否正确。 将“垂直场”、“水平场”、“扫场幅度”旋钮调至最小,按下池温开关。然后接通电源线,按下电源开关。约30分钟后,灯温、池温指示灯点亮,实验装置进入工作状态。 2观测光抽运信号
扫场方式选择“方波”,适当调大扫场幅度。再将指南针置于吸收池上边,改变扫场的方向,设置扫场方向与地磁场水平分量方向相反,然后将指南针拿开。预置垂直场电流来抵消地磁场垂直分量。然后旋转偏振片的角度,调节扫场幅度及垂直场大小和方向(综合调节),使光抽运信号(如图7所示)幅度最大。再仔细调节光路聚焦,使光抽运信号幅度最大。
3观测光磁共振谱线 测量g因子
扫场方式选择“三角波”,并使水平磁场方向(按动“水平”按钮可改变它)与地磁场水平分量和扫场方向相同。调节射频信号发生器频率,调节扫场幅度适当减小,可观察到共振信号,对应图8.a波形,可读出频率V1及对应的水平场电流I。,再按动水平场方向开关,使水平场方向与地磁场水平分量和扫场方向相反。仍用上述方法(如图8.b所示),可得到V2。这样,水平磁场所对应的频率为V=(V1+V2)/2,即排除了地磁场水平分量及扫场直流分量的影响。水平磁场B的数值可从水平场电流及水平亥姆霍兹线圈的参数来确定(亥姆
霍兹线圈轴线中心处磁场的公式见附录)。
由公式:
hv0gFB (1)
gFhv (2) 0B可计算出g因子。
式中:μ0—玻尔磁子;μ0=μB=9.27×10J/T h—普朗克常数;h=6.63×10-34J·S v—共振频率(信号源的) 4测量地磁场
同测g因子方法类似,先使扫场和水平场与地磁场水平分量方向相同,测得v1。再按动扫场及水平场方向开关,使扫场和水平场方向与地磁场水平分量方向相反,又得到v2。这样地磁场水平分量所对应的频率为v=(V1--V2)/2(即排除了扫场和水平磁场的影响)。从(1)式中得到地磁场水平分量为:
-24
B水平hv 0gF因为垂直磁场正好抵消地磁场的垂直分量,从数字表头指示的垂直场电流及垂直亥姆霍兹线圈参数,可以确定地磁场垂直分量的数值。地磁场水平分量和地磁场垂直分量的矢量和可求得地磁场。
(参考数据处理见下页)
测量gF 水平场电流(A) 0.246 0.2 同向频率f1(KHZ) 87光磁共振参考实验数据处理 反向频率f2(KHZ) 87
gF=h(f1+f2)/2μBB0 87B0(T) 87Rb 85Rb Rb 85Rb Rb 85-7 Rb 998 857 669 573 588 437 391 295 1135.9*10Rb 0.499 0.501 85Rb 0.334 0.336 923.4*10-7 -7 0.512 0.339 0.18 784 522 382 250 813.1*10 B0=16πNI×10-7/53/2r (式中N为线圈匝数,I为流过的电流,r为有效半径) 测量地磁场
水平场同向频率f1(KHZ) 反向频率f2(KHZ) 电流(A) 0.246 0.2 87f=(f1-f2)/2 87B地=hf/gFμ87B Rb 998 848 85Rb 669 563 87Rb 706 549 85Rb 470 366 Rb 146 149.5 85Rb 99.5 98.5 85Rb Rb 2.09*10-5 2.13*10-5 2.13*10-5 2.09*10-5 -5 -5 0.18 783 522 487 323 148 99.5 2.06*102.09*10厂家给出的线圈参数及线圈中心处的磁场强度B的计算公式(I为线圈电流强度): 线圈每边匝数N 线圈有效半径r 水平场 250 0.2433m 扫场 250 0.2420m 垂直场 100 0.1530m B016N16250777I100.246101135.910(特斯拉) 3/23/2r0.24335516N16250B13/2I1073/20.2107923.4107(特斯拉)
r0.24335516N16250B23/2I1073/20.18107813.1107(特斯拉)
r0.243355Rb的朗德因子
87gF850.4990.5010.5120.504
3Rb德朗因子
0.3340.3360.3390.336
3gF地磁场的平行分量
B//2.092.132.062.132.092.0910562.10105T
4
地磁场的垂直分量:(略,数值为0.2056高斯,1高斯等于10特斯拉)。
合成地磁场:(略,数值为0.293高斯)。 结论:光磁共振实验总结:通过本实验了解光抽运效应,加深了对原子超精细结构、光跃迁及磁共振的理解。知道了可以应用光泵的光检测的方法,可以大大提高磁共振分辨率。并且,也知道了怎样区分87Rb和85Rb的共振谱线。实验得出87Rb的共振频率是85Rb共振频率的1.5倍。学会了用本仪器测很微弱的地磁场的方法。实验结果是比较准确的。误差来源主要在调节频率观察共振波时,存在一定的人为误差。本实验虽然原理和操作复杂且用的时间很长,综合性很强,但收获太大了!
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuowenda.com 版权所有 湘ICP备2023022495号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务