它是在1978年由Merkel和He llman提出的。它的主要思路是假定某人拥有大量物品,重量各不同。此人通过秘密地选择一部分物品并将它们放到背包中来加密消息。背包中的物品中重量是公开的,所有可能的物品也是公开的,但背包中的物品是保密的。附加一定的条件,给出重量,而要列出可能的物品,在计算上是不可实现的。背包问题是熟知的不可计算问题,背包以其加密,解密速度快而其人注目。但是,大多数一次背包均被破译了,因此现在很少有人使用它。 DD牛的背包九讲 P01: 01背包问题 题目
有N件物品和一个容量为V的背包。第i件物品的费用是c,价值是w。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 基本思路
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[v]=max{f[v],f[v-c]+w}。 这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为 v-c的背包中”,此时能获得的最大价值就是f [v-c]再加上通过放入第i件物品获得的价值w。
注意f[v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[v-1],这样就可以保证f[N] [V]就是最后的答案。至于为什么这样就可以,由你自己来体会了。 优化空间复杂度
以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组 f[0..V]的所有值。那么,如果只用一个数组f [0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[v]呢?f[v]是由f[v]和f [v-c]两个子问题递推而来,能否保证在推f[v]时(也即在第i次主循环中推f[v]时)能够得到f[v]和f[v -c]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c]保存的是状态f[v-c]的值。伪代码如下: for i=1..N for v=V..0
f[v]=max{f[v],f[v-c]+w};
其中的f[v]=max{f[v],f[v-c]}一句恰就相当于我们的转移方程 f[v]=max{f[v],f[v-c]},因为现在的f[v-c]就相当于原来的f[v-c]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[v]由f[v-c]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。 总结
01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,
另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。 P02: 完全背包问题 题目
有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c,价值是w。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本思路
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1 件、取2件……等很多种。如果仍然按照解01背包时的思路,令f[v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:f[v]=max{f[v-k*c]+k*w|0<=k*c& lt;= v}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间则不是常数了,求解状态f[v]的时间是O(v/c),总的复杂度是超过 O(VN)的。
将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。 一个简单有效的优化
完全背包问题有一个很简单有效的优化,是这样的:若两件物品i、j满足c<=c[j]且 w>=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。 转化为01背包问题求解
既然01背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。最简单的想法是,考虑到第i种物品最多选V/c 件,于是可以把第i种物品转化为V/c件费用及价值均不变的物品,然后求解这个01背包问题。这样完全没有改进基本思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:将一种物品拆成多件物品。
更高效的转化方法是:把第i种物品拆成费用为c*2^k、价值为w*2^k 的若干件物品,其中 k满足c*2^k 你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么P01中要按照v=V..0的逆序来循环。这是因为要保证第i次循环中的状态f[v]是由状态f[v-c]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[v-c]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[v-c],所以就可以并且必须采用 v= 0..V的顺序循环。这就是这个简单的程序为何成立的道理。 这个算法也可以以另外的思路得出。例如,基本思路中的状态转移方程可以等价地变形成这种形式:f[v]=max{f[v],f[v-c]+w},将这个方程用一维数组实现,便得到了上面的伪代码。 总结 完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及 “O(VN)的算法“的小节中给出。希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得出来的,最好能够自己想一种得到这些方程的方法。事实上,对每一道动态规划题目都思考其方程的意义以及如何得来,是加深对动态规划的理解、提高动态规划功力的好方法。 P03: 多重背包问题 题目 有N种物品和一个容量为V的背包。第i种物品最多有n件可用,每件费用是c,价值是w。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 基本算法 这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i 种物品有n+1种策略:取0件,取1件……取 n件。令f[v]表示前i种物品恰放入一个容量为v的背包的最大权值,则:f[v]=max{f[v-k*c]+ k*w|0<=k<=n}。复杂度是O(V*∑n)。 转化为01背包问题 另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成n件01背包中的物品,则得到了物品数为∑n的01背包问题,直接求解,复杂度仍然是O(V*∑n)。 但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n件——均能等价于取若干件代换以后的物品。另外,取超过n件的策略必不能出现。 方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,...,2^(k-1),n-2^k+1,且k是满足n-2^k+1>0的最大整数。例如,如果n为13,就将这种物品分成系数分别为 1,2,4,6的四件物品。 分成的这几件物品的系数和为n,表明不可能取多于n件的第i种物品。另外这种方法也能保证对于0..n间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-1和2^k..n两段来分别讨论得出,并不难,希望你自己思考尝试一下。 这样就将第i种物品分成了O(log n)种物品,将原问题转化为了复杂度为O(V*∑log n)的01背包问题,是很大的改进。 O(VN)的算法 多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O(1)的时间求解。由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。我最初了解到这个方法是在楼天成的“男人八题”幻灯片上。 小结 这里我们看到了将一个算法的复杂度由O(V*∑n)改进到O(V*∑log n)的过程,还知道了存在应用超出NOIP范围的知识的O(VN)算法。希望你特别注意“拆分物品”的思想和方法,自己证明一下它的正确性,并用尽量简洁的程序来实现。 P04: 混合三种背包问题 问题 如果将P01、P02、P03混合起来。也就是说,有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。应该怎么求解呢? 背包问题的一个例子:应该选择哪些盒子,才能使价格尽可能地大,而保持重量小于或等于15 kg? 背包问题(Knapsack problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。问题的名称来源于如何选择最合适的物品放置于给定背包中。 相似问题经常出现在商业、组合数学,计算复杂性理论、密码学和应用数学等领域中。 也可以将背包问题描述为决定性问题,即在总重量不超过W的前提下,总价值是否能达到V? 目录 [隐藏] 1 定义 2 计算复杂度 3 动态规划解法 o 3.1 无界背包问题 o 3.2 0-1背包问题 4 二次背包问题 5 外部链接 [编辑] 定义 我们有n种物品,物品j的重量为wj,价格为pj。我们假定所有物品的重量和价格都是非负的。背包所能承受的最大重量为W。 如果限定每种物品只能选择0个或1个,则问题称为0-1背包问题。可以用公式表示为: maximize subject to 如果限定物品j最多只能选择bj个,则问题称为有界背包问题。可以用公式表示为: maximize subject to 如果不限定每种物品的数量,则问题称为无界背包问题。 [编辑] 计算复杂度 在计算机科学领域,人们对背包问题感兴趣的原因在于: 利用动态规划,背包问题存在一个伪多项式时间算法 把上面算法作为子程序,背包问题存在完全逼近多项式时间方案 作为NP完全问题,背包问题没有一种既准确又快速(多项式时间)的算法 [编辑] 动态规划解法 [编辑] 无界背包问题 如果重量w1, ..., wn和W都是非负的,那么用动态规划,可以用伪多项式时间解决背包问题。下面描述了无界背包问题的解法。 简便起见,我们假定重量都是正的(wj > 0)。在总重量不超过W的前提下,我们希望总价格最高。对于Y ≤ W,我们将在总重量不超过Y的前提下,总价格所能达到的最高值定义为A(Y)。A(W)即为问题的答案。 显然,A(Y)满足: A(0) = 0 A(Y) = max { A(Y - 1), max { pj + A(Y - wj) | wj ≤ Y } } 其中,pj为第j种物品的价格。 关于第二个公式的一个解释:总重量为Y时背包的最高价值可能有两种情况,第一种是该重量无法被完全填满,这对应于表达式A(Y - 1)。第二种是刚好填满,这对应于一个包含一系列刚好填满的可能性的集合,其中的可能性是指当最后放进包中的物品恰好是重量为wj的物品时背包填满并达到最高价值。而这时的背包价值等于重量为wj物品的价值和当没有放入该物品时背包的最高价值之和。故归纳为表达式pj + A(Y - wj)。最后把所有上述情况中背包价值的最大值求出就得到了A(Y)的值。 如果总重量为0,总价值也为0。然后依次计算A(0), A(1), ..., A(W),并把每一步骤的结果存入表中供后续步骤使用,完成这些步骤后A(W)即为最终结果。由于每次计算A(Y)都需要检查n种物品,并且需要计算W个A(Y)值,因此动态规划解法的时间复杂度为O(nW)。如果把w1, ..., wn, W都除以它们的最大公因数,算法的时间将得到很大的提升。 尽管背包问题的时间复杂度为O(nW),但它仍然是一个NP完全问题。这是因为W同问题的输入大小并不成线性关系。原因在于问题的输入大小仅仅取决于表达输入所需的比特数。事实上,log W,即表达W所需的比特数,同问题的输入长度成线性关系。 [编辑] 0-1背包问题 类似的方法可以解决0-1背包问题,算法同样需要伪多项式时间。我们同样假定w1, ..., wn和W都是正数。我们将在总重量不超过Y的前提下,前j种物品的总价格所能达到的最高值定义为A(j, Y)。 A(j, Y)的递推关系为: A(0, Y) = 0 A(j, 0) = 0 如果wj > Y, A(j, Y) = A(j - 1, Y) 如果wj ≤ Y, A(j, Y) = max { A(j - 1, Y), pj + A(j - 1, Y - wj) } 通过计算A(n, W)即得到最终结果。为提高算法性能,我们把先前计算的结果存入表中。因此算法需要的时间和空间都为O(nW),通过对算法的改进,空间的消耗可以降至O(W)。 [编辑] 二次背包问题 推广的背包问题有二次背包问题,背包问题,多目标背包问题等。 二次背包问题是背包问题的一种推广形式: maximize subject to for all 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuowenda.com 版权所有 湘ICP备2023022495号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务